Improvement of weighted essentially non-oscillatory schemes near discontinuities
نویسندگان
چکیده
In this article, we analyze the fifth-order weighted essentially non-oscillatory(WENO-5) scheme and show that, at a transition point from smooth region to a discontinuity point or vice versa, the accuracy order of WENO-5 is decreased. A new method is proposed to overcome this drawback by introducing 4th-order fluxes combined with high order smoothness indicator. Numerical examples show that the new method is more accurate near discontinuities.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملWeighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows
A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order com...
متن کاملWLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...
متن کاملEssentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...
متن کاملAssignment 0: Describe a Parallel Application
Weighted essentially non-oscillatory (WENO) schemes are effective numerical methods to compute flows having shocks and steep gradients. WENO schemes are based on the successful essentially non-oscillatory (ENO) schemes introduced in [9] and [10]. The initial WENO scheme is constructed in [6], and further research in WENO can be found in papers such as [2], [4] and [5]. Both ENO and WENO schemes...
متن کامل